C# OpenCvSharp DNN FreeYOLO 人脸检测

小明 2025-05-09 03:37:29 4

���录

效果

模型信息

项目

代码

下载


C# OpenCvSharp DNN FreeYOLO 人脸检测

效果

模型信息

Inputs

-------------------------

name:input

tensor:Float[1, 3, 192, 320]

---------------------------------------------------------------

Outputs

-------------------------

name:output

tensor:Float[1, 1260, 6]

---------------------------------------------------------------

项目

代码

using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using System.Windows.Forms;
namespace OpenCvSharp_DNN_Demo
{
    public partial class frmMain : Form
    {
        public frmMain()
        {
            InitializeComponent();
        }
        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
        float confThreshold;
        float nmsThreshold;
        int num_stride = 3;
        float[] strides = new float[3] { 8.0f, 16.0f, 32.0f };
        string modelpath;
        int inpHeight;
        int inpWidth;
        List class_names;
        int num_class;
        Net opencv_net;
        Mat BN_image;
        Mat image;
        Mat result_image;
        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
            pictureBox2.Image = null;
            textBox1.Text = "";
            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            image = new Mat(image_path);
        }
        private void Form1_Load(object sender, EventArgs e)
        {
            confThreshold = 0.8f;
            nmsThreshold = 0.5f;
            modelpath = "model/yolo_free_huge_widerface_192x320.onnx";
            inpHeight = 192;
            inpWidth = 320;
            opencv_net = CvDnn.ReadNetFromOnnx(modelpath);
            class_names = new List();
            class_names.Add("face");
            num_class = 1;
            image_path = "test_img/1.jpg";
            pictureBox1.Image = new Bitmap(image_path);
        }
        private unsafe void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }
            textBox1.Text = "检测中,请稍等……";
            pictureBox2.Image = null;
            Application.DoEvents();
            image = new Mat(image_path);
            float ratio = Math.Min(1.0f * inpHeight / image.Rows, 1.0f * inpWidth / image.Cols);
            int neww = (int)(image.Cols * ratio);
            int newh = (int)(image.Rows * ratio);
            Mat dstimg = new Mat();
            Cv2.Resize(image, dstimg, new OpenCvSharp.Size(neww, newh));
            Cv2.CopyMakeBorder(dstimg, dstimg, 0, inpHeight - newh, 0, inpWidth - neww, BorderTypes.Constant);
            BN_image = CvDnn.BlobFromImage(dstimg);
            //配置图片输入数据
            opencv_net.SetInput(BN_image);
            //模型推理,读取推理结果
            Mat[] outs = new Mat[1] { new Mat() };
            string[] outBlobNames = opencv_net.GetUnconnectedOutLayersNames().ToArray();
            dt1 = DateTime.Now;
            opencv_net.Forward(outs, outBlobNames);
            dt2 = DateTime.Now;
            int num_proposal = outs[0].Size(1);
            int nout = outs[0].Size(2);
            float* pdata = (float*)outs[0].Data;
            List confidences = new List();
            List boxes = new List();
            List classIds = new List();
            for (int n = 0; n  max_class_socre)
                            {
                                max_class_socre = pdata[k + 5];
                                max_ind = k;
                            }
                        }
                        max_class_socre = max_class_socre* box_score;
                        max_class_socre = (float)Math.Sqrt(max_class_socre);
                        if (max_class_socre > confThreshold)
                        {
                            float cx = (0.5f + j + pdata[0]) * strides[n];  //cx
                            float cy = (0.5f + i + pdata[1]) * strides[n];   //cy
                            float w = (float)(Math.Exp(pdata[2]) * strides[n]);   //w
                            float h = (float)(Math.Exp(pdata[3]) * strides[n]);  //h
                            float xmin = (float)((cx - 0.5 * w) / ratio);
                            float ymin = (float)((cy - 0.5 * h) / ratio);
                            float xmax = (float)((cx + 0.5 * w) / ratio);
                            float ymax = (float)((cy + 0.5 * h) / ratio);
                            int left = (int)((cx - 0.5 * w) / ratio);
                            int top = (int)((cy - 0.5 * h) / ratio);
                            int width = (int)(w / ratio);
                            int height = (int)(h / ratio);
                            confidences.Add(max_class_socre);
                            boxes.Add(new Rect(left, top, width, height));
                            classIds.Add(max_ind);
                        }
                        pdata += nout;
                    }
                }
            }
            int[] indices;
            CvDnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, out indices);
            result_image = image.Clone();
            for (int ii = 0; ii  

下载

可运行程序exe下载

源码下载

The End
微信